2D Trig IB -ANSWERS

1. (a)

(b) $\quad x=\frac{26.5}{\tan 28^{\circ}}$ (or equivalent, allow follow-through from part (a)) $=49.83925 \ldots$
$=50 \mathrm{~m}$ (correct to nearest metre)
2. Unit penalty $(\boldsymbol{U P})$ is applicable where indicated.
(a) (i)

For A, B, C, 7.3, $60^{\circ}, 90^{\circ}$, shown in correct places
Note: The 90° should look like 90° (allow $\pm 10^{\circ}$)
(ii) Using $\tan 60$ or $\tan 30$
(ft) on their diagram
Or
Using sine rule with their correct values
UP
4.21 cm

Or

Using special triangle $\frac{7.3}{\sqrt{3}}$
UP
4.21 cm
(A1)(ft)
Or
Any other valid solution
Note: If A and B are swapped then $B C=8.43 \mathrm{~cm}$
(b) (i) For ACD in a straight line and all joined up to B , for 20° shown in correct place and D labelled. D must be on AC extended.
(ii) $\mathrm{BCD}=120^{\circ}$

CBD $=40^{\circ}$
3. (a) $C \hat{A} B=180-2 \times 23^{\circ}$
(M1)
(A1) (C2)
(b) $\frac{A B}{\sin 23^{\circ}}=\frac{15}{\sin 134^{\circ}}$

Note: Follow through with candidate's answer from (a)
$A B=\frac{15 \sin 23^{\circ}}{\sin 134^{\circ}}$
$A B=8.147702831 \ldots$
$=8.15$ (3 s.f.)
(A1) (C2)
[4]
4. (a) $\mathrm{ACD}=120^{\circ}$
(M1)
$\mathrm{AD}^{2}=3^{2}+4^{2}-2(3)(4) \cos 120^{\circ}$ or $\mathrm{AD}^{2}=3^{2}+7^{2}-2(3)(7) \cos 60^{\circ}$
Note: Award (M1) for correct substitution only.
$\mathrm{AD}=\sqrt{37}$
$=6.08 \mathrm{~cm}$ (2 d.p.)
5. (a) Angle $\mathrm{A}=90-5=85^{\circ}$.
(b) $\mathrm{BC}^{2}=6^{2}+8^{2}-2 \times 8 \times 6 \cos \left(85^{\circ}\right)$
so $B C=\sqrt{91.6330487}=9.57$ (3 s.f.)
(A1) (C3)
(c) $\frac{\mathrm{BC}}{\sin (\mathrm{A})}=\frac{\mathrm{AC}}{\sin (\mathrm{B})}$
$\sin (B)=\frac{6 \sin \left(85^{\circ}\right)}{9.572515275}=0.6244093654$
Angle B $=\sin ^{-1}(0.6244093654)=38.6^{\circ}$
Note: Allow 38.7° if obtained using 9.57 .
6. Note on use of radians:

In (a) the answer will be -874. Award (A0) at the last step for either + or -874. In (b) follow through with either sign from (a) can receive (M1) (A1) ft, but in both cases the final answer of ± 947000 receives (A0) for unrealistic sign and/or for unrealistic magnitude.
(a) Third angle of triangle $=180-(75+40)$
$=65^{\circ}$
Notes: Award (A2) for 65 seen.
For use of 40° or 75° in an otherwise correct sine rule award (M1)(A0)(A0)

Length of fence: $\frac{x}{\sin 65^{\circ}}=\frac{410}{\sin 75^{\circ}}$ (sine rule)
(M1)(A1)
$x=385 \mathrm{~m}$ (3 s.f.)
(A1)
or (G2) 5
(b) \quad Area $=\frac{1}{2} a b \sin c$
area $=\frac{1}{2} \times 385 \times 245 \sin 24^{\circ}$
(M1)(A1)
$=19200\left(\mathrm{~m}^{2}\right)(3$ s.f. $)$
(A1)
or (G2) 3
7. (a) $\mathrm{CA}^{2}=800^{2}+500^{2}$
(M1)(A1)
CA $=943$
(AG) 2
(b) $\quad \tan \mathrm{B} \hat{\mathrm{CA}}=\frac{800}{500}$

$$
\mathrm{B} \hat{\mathrm{C}} \mathrm{~A}=58.0^{\circ}\left(\text { Allow } 58^{\circ}\right)
$$

(c) (i) $\quad \mathrm{C} \hat{\mathrm{A}}=180-90-58=32^{\circ}$

$$
\begin{equation*}
\mathrm{CAO}=110-32=78^{\circ} \tag{A1}
\end{equation*}
$$

(ii) $\mathrm{CO}^{2}=1500^{2}+943^{2}-2 \times 1500 \times 943 \cos 78^{\circ}$ $\mathrm{CO}=1597$

$$
=1600 \mathrm{~m} \text { (3 s.f. })
$$

(M1)(A1)
(A1) 5
(d) Area of triangle $\mathrm{OAC}=\frac{1}{2} \times 1500 \times 943 \times \sin 78^{\circ}$ (or more accurate values)
$=691794.89 \mathrm{~m}^{2}$ (692000)
Area of triangle $\mathrm{ABC}=\frac{1}{2} \times 800 \times 500=200000 \mathrm{~m}^{2}$
Total area $=691795+200000$
$=892000 \mathrm{~m}^{2}(\mathbf{f t}$ from candidate's angle CÂO $)$
(A1) 4
(e) Time in seconds $=\frac{(1500+800+500+1597)}{4}$
(A1)(A1)
Note: Award (A1) for numerator, (A1) for 4 in denominator.

$$
\begin{aligned}
& =1099.25 \\
\text { Time in minutes } & =\frac{1099.25}{60} \\
& =18.3(\mathbf{f t} \text { from candidate's answer to }(\mathrm{c})(\mathrm{ii}))
\end{aligned}
$$

(A1) 3
[16]

