Geometry Test IB Review Answers

6. Unit penalty (UP) may apply in this question.
(a)

(A1)
Note: (A1) for fully labelled sketch.
(b) $\frac{\mathrm{AB}}{\sin 30}=\frac{7}{\sin 65}$

$$
\mathrm{AB}=3.86 \mathrm{~cm}
$$

Note: (M1) for use of sine rule with correct values substituted.
(A1)(ft)
(UP) (C2)
(c) Angle $\mathrm{BA} \mathrm{C}=85^{\circ}$

Area $=\frac{1}{2} \times 7 \times 3.86 \times \sin 85^{\circ}$
$=13.5 \mathrm{~cm}^{2}$
(A1)(ft)
(C3) (UP)
[6]
8. (a) $\pi R^{2}=36 \pi$ so $R=6 \mathrm{~cm}$ (M1)(A1)(C2)
(b) Use cosine rule. $\mathrm{AB}^{2}=6^{2}+6^{2}-2 \times 6 \times 6 \cos \left(110^{\circ}\right)$

$$
\begin{aligned}
& \mathrm{AB}^{2}=96.6 \\
& \mathrm{AB}=9.83 \mathrm{~cm} \\
& (\mathrm{~A} 1)(\mathrm{ft})
\end{aligned}
$$

OR
$\frac{6}{\sin \left(35^{\circ}\right)}=\frac{\mathrm{AB}}{\sin \left(110^{\circ}\right)}$
$\mathrm{AB}=9.83 \mathrm{~cm}$
OR

$$
\frac{110}{2}=55
$$

$\sin \left(55^{\circ}\right)=\frac{\frac{1}{2} \mathrm{AB}}{6}$
$\mathrm{AB}=9.83$
(M1)(A1)(ft)
(A1)(ft)(C3)

Note: If this method is used, then the $\frac{1}{2}$ AB must be evident to obtain the (M1) and the
first (A1) requires the 55 and the 6 to be correct.
(c) $\mathrm{L}=\sqrt{36 \pi}$ or $6 \sqrt{\pi}$ or 10.6 cm
(A1)(C1)
15. (a) $\mathrm{BD}^{2}=15^{2}+20^{2}-2 \times 15 \times 20 \times \cos 110^{\circ}$

Note: Award (M1) for using the cosine rule, award (A1) for correct substitution.
$\mathrm{BD}^{2}=830.212$
$\mathrm{BD}=28.8$
OR
$\mathrm{BD}=28.8$
(b) $\frac{28.81}{\sin \mathrm{C}}=\frac{22}{\sin 30^{\circ}}$
$\mathrm{C}=40.9^{\circ}$
OR
$\mathrm{C}=40.9^{\circ}$
(c) $\mathrm{BD}=30$
(d) $\frac{30}{\sin \mathrm{C}}=\frac{22}{\sin 30^{\circ}}$

OR
$\mathrm{C}=43.0^{\circ}$
(G2) 2
(e) Percentage error $=\frac{43.0-40.9}{40.9} \times 100$
$=5.13 \%$
(M1)(A1)
(A1)
3
[12]
19. (a) $\mathrm{AC}^{2}=\mathrm{CD}^{2}+\mathrm{AD}^{2}-2 \times \mathrm{AD} \times \mathrm{CD} \times \cos (\mathrm{CD} \mathrm{A})$
$=80^{2}+30^{2}-2 \times 30 \times 80 \times \cos \left(60^{\circ}\right)$
$\mathrm{AC}^{2}=4900$
so $\mathrm{AC}=70 \mathrm{~m}$ (units not required)
(M1)
(A1)
(A1)
(A1) (C4)
(M1)
(M1)(A1)
(A1)
[8]
5. (a) $\mathrm{AE}^{2}+\mathrm{OE}^{2}=\mathrm{OA}^{2}$ \qquad
$\Rightarrow \mathrm{AE}^{2}+k^{2}=8^{2}$
Note: Award (M1) for using and substituting correctly in equation (3).
$\mathrm{AE}^{2}=\sqrt{64-h^{2}}$
(A1) 2
(b) Volume $(V)=2 h \pi r^{2}$

$$
\begin{align*}
& =2 \pi h\left(\mathrm{AE}^{2}\right) \\
& =2 \pi h\left(64-\mathrm{h}^{2}\right) \mathrm{cm}^{3} \tag{4}
\end{align*}
$$

(AG) 2
(c) (i) From (b) $V=128 \pi h-2 \pi h^{3}$

Note: Award (M1) for using equation (4) or any other correct approach.

$$
\begin{equation*}
\frac{\mathrm{d} V}{\mathrm{~d} h}=128 \pi-6 \pi h^{2}=0 \text { at maximum } / \text { minimum points } \tag{M2}
\end{equation*}
$$

Note: Award (M2) for correctly differentiating V w.r.t. x.
$\Rightarrow h=\sqrt{\frac{64}{3}}= \pm 4.62 \mathrm{~cm}$ (3 s.f.)
Test to show that V is maximum when $h=4.62$
Note: Award (R1) for testing to confirm V is indeed maximum.
(ii) $\quad \mathrm{AE}^{2}=64-h^{2}$

$$
\begin{equation*}
=64-\frac{64}{3}=\frac{128}{3} \tag{M1}
\end{equation*}
$$

Notes: Follow through with candidate's AE from part (a) (M1) is for correctly obtaining candidate's $A E^{2}$.

Therefore maximum volume $=\pi r^{2}(2 h)=\pi\left(\frac{128}{3}\right)\left(2\left(\sqrt{\frac{64}{3}}\right)\right)$
Note: Follow through with candidate's $A E^{2}$
$=1238.7187 \ldots=1239 \mathrm{~cm}^{3}$ (nearest cm^{3})
Notes: Correct answer only.
Accept $1238 \mathrm{~cm}^{3}$ if and only if candidate uses $\pi=3.14$
17. (a)

$$
\begin{align*}
& \tan 3^{\circ}=\frac{x}{600} \\
& x=600 \tan 3^{\circ} \\
& x=31.4447 \\
& x=31.4 \mathrm{~m} \tag{A1}\\
& \text { Therefore, height }=40 \mathrm{~m}+31.4 \mathrm{~m} \\
& =71.4 \mathrm{~m} \tag{A1}
\end{align*}
$$

(b) (i)

(A1)
Note: For (A1) the candidate must have the 40, the 92 and the 4° in the appropriate places.
(ii)

$\tan 4^{\circ}=\frac{52}{x}$
$x=\frac{52}{\tan 4^{\circ}}$
$x=743.6346453=744 \mathrm{~m}$
(A1) 4
(c) (i)

(ii) $\frac{\sin c}{600}=\frac{\sin 110^{\circ}}{1104}$
$\sin c=\frac{600 \times \sin 110^{\circ}}{1104}$
$c=30.710635^{\circ}$
$c=30.7^{\circ}$ (3 s.f.)
(iii) area $=\frac{1}{2} \times 600 \times 744 \sin 110^{\circ}$
$=209739.393$
$=210000 \mathrm{~m}^{2}$ (3 s.f.)
(M1)
(A1)

