6. Unit penalty (UP) may apply in this question.

(A1) *Note:* (A1) *for fully labelled sketch.* (C1)

(b)
$$\frac{AB}{\sin 30} = \frac{7}{\sin 65}$$
 (M1)

(c) Angle
$$B\hat{A}C = 85^{\circ}$$
 (A1)

Area =
$$\frac{1}{2} \times 7 \times 3.86 \times \sin 85^{\circ}$$
 (M1)

=
$$13.5 \text{ cm}^2$$
 (A1)(ft) (C3)
(UP)

[6]

8. (a)
$$\pi R^2 = 36\pi$$
 so $R = 6$ cm (M1)(A1)(C2)

(b) Use cosine rule.
$$AB^2 = 6^2 + 6^2 - 2 \times 6 \times 6 \cos (110^\circ)$$
 (M1)(A1)(ft)
 $AB^2 = 96.6$

$$AB = 9.83 \text{ cm}$$

(A1)(ft)

OR

$\frac{6}{\sin{(35^\circ)}} = \frac{1}{\sin{(35^\circ)}}$	AB (110°)	(M1)(A1)(ft)	
AB = 9.83 cm		(A1)(ft)	
OR			
$\frac{110}{2}$ =55			
$\sin(55^\circ) = \frac{\frac{1}{2}}{6}$	AB	(M1)(A1)(ft)	
AB = 9.83		(A1)(ft)(C3)	
N	ote: If this method is used, then the $\frac{1}{2}$ AB mu.	st be evident	
to fir	obtain the (M1) and the st (A1) requires the 55 and the 6 to be correct		
$L = \sqrt{36\pi}$ or	$6\sqrt{\pi}$ or 10.6 cm	(A1)(C1)	[6]
$BD^2 = 15^2 + 20$ No	$p^2 - 2 \times 15 \times 20 \times \cos 110^\circ$ ote: Award (M1) for using the cosine rule, vard (A1) for correct substitution.	(M1)(A1)	
$BD^2 = 830.212$ BD = 28.8			(A1)
OR			
BD = 28.8			(G3)
28.81 22			

(b) $\frac{28.81}{\sin C} = \frac{22}{\sin 30^{\circ}}$ (M1)(A1) C = 40.9° (G1)

3

OR

(c)

15. (a)

$$C = 40.9^{\circ}$$
 (G3) 3

(c) BD = 30 (A1) 1

(d)
$$\frac{30}{\sin C} = \frac{22}{\sin 30^{\circ}}$$
 (M1)
C = 43.0° (A1)

$$C = 43.0^\circ$$

OR

$$C = 43.0^{\circ}$$
 (G2) 2

(e) Percentage error =
$$\frac{43.0 - 40.9}{40.9} \times 100$$
 (M1)(A1)
= 5.13% (A1) 3 [12]

19. (a)
$$AC^2 = CD^2 + AD^2 - 2 \times AD \times CD \times \cos(CDA)$$
 (M1)
 (M1)

 $= 80^2 + 30^2 - 2 \times 30 \times 80 \times \cos(60^\circ)$ (A1)
 (A1)

 $AC^2 = 4900$ (A1)
 (A1)

 so $AC = 70$ m (units not required) (A1) (C4)

(b)
$$\frac{50}{\sin(30^\circ)} = \frac{70}{\sin(ABC)}$$
 (M1)

$$\sin(ABC) = \frac{1}{2} \times \frac{70}{50} = \frac{7}{10}$$
(M1)(A1)

$$A\hat{B}C = \sin^{-1}\left(\frac{7}{10}\right) = 44.4^{\circ}$$
(A1) (C4)

[8]

$$AE^2 = \sqrt{64 - h^2} \tag{A1}$$

(b) Volume (V) =
$$2h\pi r^2$$
 (M1)

$$=2\pi h(AE^2) \tag{M1}$$

$$= 2\pi h(64 - h^2) \text{ cm}^3 \dots (4)$$
 (AG) 2

(c) (i)	(i)	From (b) $V = 128\pi h - 2\pi h^3$	(M1)
		<i>Note: Award (M1) for using equation (4) or any other correct approach.</i>	
		dV	

$$\frac{\mathrm{d}v}{\mathrm{d}h} = 128\pi - 6\pi h^2 = 0 \text{ at maximum/minimum points}$$
(M2)

Note: Award (M2) for correctly differentiating V w.r.t. x.

$$\Rightarrow h = \sqrt{\frac{64}{3}} = \pm 4.62 \text{ cm} (3 \text{ s.f.}) \tag{A1}$$

Test to show that *V* is maximum when h = 4.62

Note: Award (*R1*) for testing to confirm V is indeed maximum.

(ii)
$$AE^2 = 64 - h^2$$

= $64 - \frac{64}{3} = \frac{128}{3}$ (M1)

Notes: Follow through with candidate's AE from part (a) (M1) is for correctly obtaining candidate's AE^2 .

Therefore maximum volume =
$$\pi r^2(2h) = \pi \left(\frac{128}{3}\right) \left(2\left(\sqrt{\frac{64}{3}}\right)\right)$$
 (M1)

Note: Follow through with candidate's AE^2

= 1238.7187...= 1239 cm³ (nearest cm³) (A1) 3
Notes: Correct answer only.
Accept 1238 cm³ if and only if candidate uses
$$\pi = 3.14$$

[12]

3

(R1) 5

17. (a)

$$\tan 3^{\circ} = \frac{x}{600}$$

x = 600 tan 3°
x = 31.4447
x = 31.4 m (A1)
Therefore, height = 40 m + 31.4 m
= 71.4 m (A1)

(ii)

$$\tan 4^\circ = \frac{52}{x} \tag{M1}$$
$$x = \frac{52}{\tan 4^\circ}$$

$$\tan 4^{\circ}$$

x = 743.6346453 = 744 m (A1) 4

(c) (i)

$$BC = 1104 \text{ (to the nearest metre)}$$
(A1)

(ii)
$$\frac{\sin c}{600} = \frac{\sin 110^{\circ}}{1104}$$
 (M1)

$$\sin c = \frac{600 \times \sin 110^{\circ}}{1104} \tag{M1}$$

$$c = 30.710635^{\circ}$$

$$c = 30.7^{\circ} (3 \text{ s.f.})$$
(A1)

(iii)
$$\operatorname{area} = \frac{1}{2} \times 600 \times 744 \sin 110^{\circ}$$
 (M1)
= 209739.393
= 210000 m² (3 s.f.) (A1) [15]

8