Calculus Optimisation Questions

1. A farmer wishes to enclose a rectangular field using an existing fence for one of the four sides.

(a) Write an expression in terms of x and y that shows the total length of the new fence.
(b) The farmer has enough materials for 2500 metres of new fence. Show that

$$
\begin{equation*}
y=2500-2 x \tag{1}
\end{equation*}
$$

(c) $\quad A(x)$ represents the area of the field in terms of x.
(i) Show that

$$
\begin{equation*}
A(x)=2500 x-2 x^{2} \tag{2}
\end{equation*}
$$

(ii) Find $A^{\prime}(x)$.
(iii) Hence or otherwise find the value of x that produces the maximum area of the field.
(iv) Find the maximum area of the field.
2. The perimeter of a rectangle is 24 metres.
(a) The table shows some of the possible dimensions of the rectangle. Find the values of a, b, c, d and e.

Length (m)	Width (m)	Area (m²)
1	11	11
a	10	b
3	c	27
4	d	e

(b) If the length of the rectangle is $x \mathrm{~m}$, and the area is $A \mathrm{~m}^{2}$, express A in terms of x only.
(c) What are the length and width of the rectangle if the area is to be a maximum?
(Total 6 marks)
3. A football is kicked from a point $\mathrm{A}(a, 0), 0<a<10$ on the ground towards a goal to the right of A.

The ball follows a path that can be modelled by part of the graph

$$
y=-0.021 x^{2}+1.245 x-6.01, x \in \mathbb{R}, y \geq 0 .
$$

x is the horizontal distance of the ball from the origin y is the height above the ground
Both x and y are measured in metres.
(a) Using your graphic display calculator or otherwise, find the value of a.
(b) Find $\frac{d y}{d x}$.
(c) (i) Use your answer to part (b) to calculate the horizontal distance the ball has travelled from A when its height is a maximum.
(ii) Find the maximum vertical height reached by the football.
(d) Draw a graph showing the path of the football from the point where it is kicked to the point where it hits the ground again. Use 1 cm to represent 5 m on the horizontal axis and 1 cm to represent 2 m on the vertical scale.

The goal posts are 35 m from the point where the ball is kicked.
(e) At what height does the ball pass over the goal posts?
4. A closed rectangular box has a height y cm and width $x \mathrm{~cm}$. Its length is twice its width. It has a fixed outer surface area of $300 \mathrm{~cm}^{2}$.

(a) Show that $4 x^{2}+6 x y=300$.
(b) Find an expression for y in terms of x.
(2)
(c) Hence show that the volume V of the box is given by $V=100 x-\frac{4}{3} x^{3}$.
(2)
(d) Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$.
(e) (i) Hence find the value of x and of y required to make the volume of the box a maximum.
(ii) Calculate the maximum volume.

