Exponential Functions IB Questions

1. A function is represented by the equation $f(x) = 3(2)^{x} + 1$.

The table of values of $f(x) - 3 \le x \le 2$ is given below.

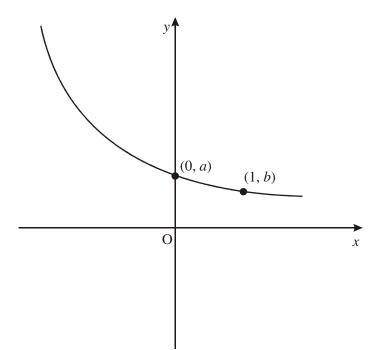
ſ	X	-3	-2	-1	0	1	2
	f(x)	1.375	1.75	а	4	7	b

(a) Calculate the values for *a* and *b*.

(2)

(b) On graph paper, draw the graph of f(x), for $-3 \le x \le 2$, taking 1 cm to represent 1 unit on both axes.

(4)


The domain of the function f(x) is the real numbers, \mathbb{R} .

(b) Write down the range of f(x).

(2)

(d) Using your graph, or otherwise, find the approximate value for x when f(x) = 10.

(2) (Total 10 marks) 2. The following diagram shows the graph of $y = 3^{-x} + 2$. The curve passes through the points (0, a) and (1, b).

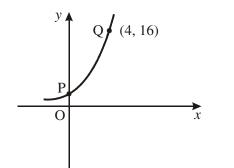


Diagram not to scale

- (a) Find the value of
 - (i) *a*;
 - (ii) *b*.
- (b) Write down the equation of the asymptote to this curve.

(Total 8 marks)

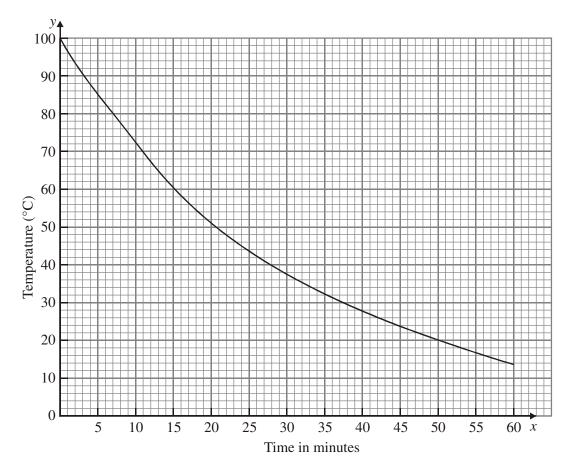

3. The diagram below shows a part of the graph of $y = a^x$. The graph crosses the y-axis at the point P. The point Q (4, 16) is on the graph.

Diagram not to scale

Find

- (a) the coordinates of the point P;
- (b) the value of *a*.

- (a) Write down the temperature after 5 minutes.
- (b) After how many minutes is the temperature 50° C?

The equation of the graph for all positive *x* can be written in the form $y = 100(5^{-0.02x})$.

(c) Calculate the temperature after 80 minutes.

(d) Write down the equation of the asymptote to the curve.

- 5. The number (*n*) of bacteria in a colony after *h* hours is given by the formula $n = 1200(3^{0.25h})$. Initially, there are 1200 bacteria in the colony.
 - (a) Copy and complete the table below, which gives values of *n* and *h*. **Give your answers to the nearest hundred.**

time in hours (<i>h</i>)	0	1	2	3	4
no. of bacteria (<i>n</i>)	1200		2100	2700	

(b) On graph paper, draw the graph of the above function. Use a scale of 3 cm to represent 1 hour on the horizontal axis and 4 cm to represent 1000 bacteria on the vertical axis. Label the graph clearly.

(5)

(2)

- (c) Use your graph to answer each of the following, showing your method **clearly**.
 - (i) How many bacteria would there be after 2 hours and 40 minutes? Give your answer to the nearest hundred bacteria.
 - (ii) After how long will there be approximately 3000 bacteria? Give your answer to the nearest 10 minutes.

(4) (Total 11 marks)

6. In an experiment researchers found that a specific culture of bacteria increases in number according to the formula

$$N = 150 \times 2^t,$$

where N is the number of bacteria present and t is the number of hours since the experiment began.

Use this formula to calculate

- (a) the number of bacteria present at the start of the experiment;
- (b) the number of bacteria present after 3 hours;
- (c) the number of hours it would take for the number of bacteria to reach 19 200.