1. (a)
$$l = \sqrt{8^2 + 8^2}$$
 (M1)
= $\sqrt{128}$
= 11.3 (3 s.f.) (A1)

(b)
$$L = \sqrt{\sqrt{128^2} + 8^2}$$
 OR $L = \sqrt{11.3^2 + 8^2}$ (allow ft from (a)) (M1)
= $\sqrt{128 + 64}$ **OR** = $\sqrt{127.69} + 64$
= 13.9 (3 s.f.) **OR** = 13.8 (3 s.f.) (A1)
[4]

14. (a)
$$XM = 2$$
 (A1) (C1)

(b)
$$DM = \sqrt{(9+4)} = \sqrt{13} \ (= 3.61)$$
 (M1)(A2)

(c)
$$\tan D\hat{M}X = \frac{3}{2}$$
 (M1)(A1)
Note: Award (M1) for the correct angle, (A1) for the correct ratio.
angle $D\hat{M}X = 56.3^{\circ}$ (A2) (C4)
OR

$$\sin D\hat{M}X = \frac{3}{3.61}$$
 (M1)(A1)

angle
$$D\hat{M}X = 56.2^{\circ}$$
 (A2)
OR

$$\cos D\hat{M}X = \frac{2}{3.61}$$
(M1)(A1)
angle $D\hat{M}X = 56.4^{\circ}$
(A2)
Note: Accept correct answer given in radians, or degrees.

Note: Accept correct answer given in radians, or degrees, minutes and seconds.

[8]

15. (a)
$$\sin (55^{\circ}) = \frac{3}{\text{AD}}$$
 (M1)(A1)

$$AD = \frac{5}{\sin(55^\circ)}$$
(M1)

AD = 3.66232 = 3.66 m to 3 s.f. (units not required). (A1) (C4)

(b)
$$DB^2 = AD^2 + DC^2 = 3.66232^2 + 7^2$$
 (M1)(A1)
 $DB^2 = 62.4126$ hence $DB = 7.90$ m (units not required). (A1)(A1)
Note: Use of 3.662 makes no difference to final answer.
Award at most (M0)(A0)(A1)ft for an incorrect cosine
rule formula. Award at most (M1)(A0)(A0)(A1)ft for
incorrect substitution into correct cosine rule formula.
[8]

8. (a) $XO^2 = 252 - 7^2$ (M1) *Note:* Award (M1) for using Pythagoras' Theorem with correct signs and values (A1)(22)

$$XO = 24$$
 (A1)(G2) 2

(b)
$$\cos \alpha = \frac{7}{25}$$

M1)
Note: Award (M1) for using any correct ratio. (

$$\alpha = 73.7^{\circ} (73^{\circ} 44')$$
(A1)(ft)(G2) 2
Note: Do not accept radians.

(d) $AB^2 = 7^2 + 7^2 - 2 \times 7 \times 7 \times \cos 120^\circ$

M1)(A1)
Note: Award (M1) for using cosine rule.

$$AB = 12.1(\sqrt{147})$$
 (A1)(ft)(G2) 3
Notes: Award (M1) for substituting values from the problem

(

Notes: Award (M1) for substituting values from the problem into the cosine rule, (A1) for correct values.

M1)(A1) <i>Note:</i> Award (M1) for substituting values from the problem into the cosine rule, (A1) for correct values.	(
$\theta = 28.1^{\circ} (28.0^{\circ})$ (A1)(ft)(<i>Note:</i> Accept 28°. If using an isosceles triangle, award (M1) for angle, (A1) for answer, (A1) for doubling.	G2) 3	[11]
	into the cosine rule, (A1) for correct values. $\theta = 28.1^{\circ} (28.0^{\circ})$ (A1)(ft)(0 Note: Accept 28°. If using an isosceles triangle, award	Note: Award (M1) for substituting values from the problem into the cosine rule, (A1) for correct values. $\theta = 28.1^{\circ} (28.0^{\circ})$ (A1)(ft)(G2) 3Note: Accept 28°. If using an isosceles triangle, award

3. Unit penalty (UP) is applicable in question parts (a) (b) and (e) **only**.

Accept alternative, correct methods

(a)	$V = \frac{1}{3} \times 3.2^2 \times 2.8$		(M1)
	Note: (M1) for substituting in correct formula		
	$= 9.56 \text{ cm}^3$	(A1)(G2) (UP)	2

(b) 9.56×9.3 (M1) = 88.9 grams (A1)(ft)(G2)

(c)
$$\frac{1}{2}$$
 base = 1.6 seen
Note: Award (M1) for halving base (M1)

(UP)

2

 $OC^2 = 1.6^2 + 1.6^2 = 5.12$ (A1) Note: Award (A1) for one correct use of Pythagoras

$$5.12 + 2.8^{2} = 12.96 = VC^{2}$$
(M1)
Note: Award (M1) for using Pythagoras again to find VC²

$$VC = 3.6 \text{ AG}$$
(A1)

$$Note: Award (A1) for 3.6 obtained from 12.96 only (not 12.95...)$$

OR

$$AC^{2} = 3.2^{2} + 3.2^{2} = 20.48$$

Note: Award (A1) for one correct use of Pythagoras

$$OC = \frac{1}{2}\sqrt{20.48} (=2.26...)$$
(M1)

Note: Award (M1) for halving AC

$$2.8^{2} + (2.26...)^{2} = VC^{2} = 12.96$$
(M1)
Note: Award (M1) for using Pythagoras again to find VC²

(d)
$$3.2^2 = 3.6^2 + 3.6^2 - 2 \times (3.6) (3.6) \cos B\hat{V}C$$
 (M1)(A1)
 $B\hat{V}C = 52.8^{\circ} (no (ft) here)$ (A1)(G2)
Note: Award (M1) for substituting in correct formula, (A1)
for correct substitution

OR

sin
$$B\hat{V}M = \frac{1.6}{3.6}$$
 where *M* is the midpoint of BC (M1)(A1)

$$BVC = 52.8^{\circ} (no (ft) here)$$
(A1) 3

(e)
$$4 \times \frac{1}{2} (3.6)^2 \times \sin(52.8^\circ) + (3.2)^2$$
 (M1)(M1)
Note: Award (M1) for 4, (M1) for substitution in relevant
triangle area, $(\frac{1}{2} (3.2)(2.8) \text{ gets (M0)})$

 $(M1) for + (3.2)^2$

(UP)

=
$$30.9 \text{ cm}^2$$
 ((ft) from their (d)) (A1)(ft)(G2) 4
(UP)

[15]