Arithmetic Sequences and Series

Homework: Due on Thursday, March 20th.

Bueon Tuesday, 7 tho $\begin{gathered}\text { Jamuary! }\end{gathered}$
PART 1: Page 298-7A: ALL PART 2: Page 301-302:-7B: ALL

In the beginning, there were patterns...

Recognizing the pattern...

$$
\begin{aligned}
& \cdot 14,17,20,23, \ldots 26,29,32 \ldots(+3) \\
& \cdot 8,16,24,32, \ldots 40,48,56 \ldots(+8) \\
& \cdot 36,31,26,21, \ldots 16,11,6 \ldots(-5) \\
& \cdot 1,4,16,64, \ldots \\
& \cdot 480,240,120,60, \ldots 30,15,7.5(\div 2) \\
& \cdot 50000,10000,2000,400, \ldots 80,15 \cdots(\div 5)
\end{aligned}
$$

Arithmetic Sequences

- An Arithmetic Sequence is a sequence of numbers in which each term differs from the previous one by the same fixed "ns "d" number. They can be \qquad finite or infinite (symbol ...) And the elements of it are called terms.
d is also called "common difference"
- Let's investigate some formulas!!!

General Term Formula

$$
\begin{aligned}
& \text { Let's investigate: } \\
& \mu_{2}=\mu_{1}+d \\
& \mu_{3}=\mu_{2}^{2}+d \\
& \mu_{3}=\widetilde{\mu}_{1}+d+d \\
& \mu_{3}=\mu_{1}+2 d \\
& \mu_{4}=\mu_{3}^{2}+d \\
& \mu_{4}=\widetilde{u}_{1}+2 d+d \\
& \mu_{4}=\mu_{1}+3 d
\end{aligned}
$$

- The formula for

$$
u_{n}=u_{1}+(n-1) d
$$

Where:
$u_{n}=$ the "n"th term
$u_{1}=$ the $1^{\text {st }}$ term
$n=$ "number of terms"
$d=$ difference (constant)

Examples:

- Given a sequence of numbers: $2,5,8,11,14,17, \ldots$
a) Show the sequence is an arithmetic sequence
b) Write down the common difference 2 methods to answer part a)
c) Find the $10^{\text {th }}$ term
a. ${ }^{\text {d) Find the } 25^{\text {th }} \text { term }}$

$$
\begin{aligned}
14-11 & =11-8 \\
2 & =2
\end{aligned}
$$

$b_{1} d=3$
$s u_{10}=\mu_{1}+9 d$

$$
\sqrt{u_{10}=29} \mid=2^{1}+9(3)
$$

$$
\begin{aligned}
& 11=\frac{? 14+8}{2} \\
& 11=112 \\
& \begin{array}{l}
11=11-8 \\
3=32 \\
\therefore d=3 \text { a constant }
\end{array}\left\{\begin{array}{l}
11=112+\frac{2+8}{2} \\
5=5 r
\end{array}\right. \\
& \mu_{3}-\mu_{2}=\mu_{2}-\mu_{1} \text { ? } \\
& \text { [d] } \mu \\
& \begin{aligned}
\mu_{25} & =\mu_{1}+24 d \\
& =2+24(3)
\end{aligned} \\
& =2+24(3)
\end{aligned}
$$

- For the sequence $2,9,16,23,30, \ldots \Rightarrow d=9-2=7$
a) Find the formula for the general term u_{n}
b) Hefind the $100^{\text {th }}$ term of the sequence
c) Is 828 a term of the sequence? Is 2341?
a)

$$
\begin{gathered}
\mu_{n}=\mu_{1}+(n-1) d \\
\mu_{n}=2+(n-1) 7 \\
\mu_{n}=2+7(n-1) \\
\mu_{n}=2+7 n-7 \\
\mu_{n}=7 n-5
\end{gathered}
$$

$\sqrt[b]{100^{* 2}}$ terns

$$
u_{100}=7(100)-5 \Rightarrow \mu_{100}=695
$$

c) $828=2+(n-1)(7)$

$$
\begin{aligned}
828 & =7 n-5 \\
7 n & =833 \\
n & =119
\end{aligned}
$$

Yes! $\left\{\begin{array}{l}\text { it is the } 119^{\text {th }} \text { term. } \\ u_{119}=828\end{array}\right.$

$$
2341=7 n-5
$$

$$
7 n=2346
$$

$$
n=335.14 \ldots
$$

NO! because n is not a whole\#t he 2^{7}

Examples

- For the sequence of numbers: 61014 ... 50 Finite
a) Write down the common difference
b) Find the number of terms in the sequence.
a) $d=10-6=4$
b) $u_{n}=50$

$$
50=6+(n-1) 4
$$

$d=4 \quad n$?
$50=6+4 n-4$
$50=2+4 n$

- The second term of an arithmetic sequence is 1 and the seventh term is 26 .
a) Find the first term and the common difference.
a)

$$
\begin{aligned}
& \text { b) Find the 100 therm. } \begin{aligned}
\mu_{1}=? \\
\mu_{1}=\mu_{1}+6 d \\
\mu_{2}=1 \\
\mu_{7}=26
\end{aligned} \Rightarrow 26=\mu_{1}+6 d \\
&
\end{aligned} \quad \Rightarrow \mu_{2}=\mu_{1}+d .
$$

$$
\left\{\begin{array}{l}
26=\mu_{1}+6 d \\
1=\mu_{1}+d \Rightarrow
\end{array}\right.
$$

$$
\text { Solve from } \in D C\left\{\begin{array}{l}
x_{1}=-4 \\
x_{2}=5
\end{array}\right.
$$

$$
\mu_{1}=-4
$$

$$
d^{\prime}=5
$$

$$
\left.\begin{array}{l}
26=(1-d)+6 d \\
26=1+5 d \\
2 s=s d \\
d=s
\end{array}\right\} \begin{aligned}
& u_{1}=1-5 \\
& u_{1}=-4
\end{aligned}
$$

Examples

- Find k given that $3 k+1, k$, and -3 are consecutive terms of an arithmetic sequence. $3 k+1)+(-3) \quad k-(3 k+1)=-3-k$

$$
\left.\begin{array}{l}
k=\frac{(3 k+1)+(-3)}{2} \\
2 k=3 k+1-3 \\
2 k=3 k-2
\end{array} \quad \begin{array}{r}
k-(3 k+1)=-3-k \\
-2 k+1=-3-k \\
-k=-2
\end{array}\right] \begin{aligned}
& k=2
\end{aligned}
$$

- Find the general term u_{n} for an arithmetic sequence given that $u_{3}=8$ and $u_{8}=-17$

Tricky example from homework:
Page 299-\#5: the nth term $u=42-3 n$
a) first term $u 1=42-3(1)$
second term uL $=42-3(2)$
b) $-9=42-3 n$, solve for n
c) $u k=42-3 k$ and $u(k+1)=42-3(k+1)=42-3 k-3=39-3 k$

NOw, because we now that the sum of
$u k+u(k+1)$ is equal to 33 , we can write $u k+u(k+1)=33$

Which translates into:

$$
\begin{aligned}
{[42-3 k]+[39-3 k] } & =33 \\
81-6 k & =33 \\
-6 k & =-48 \\
k & =8
\end{aligned}
$$

